Hybrid passivity and finite gain stability theorem: stability and control of systems possessing passivity violations

نویسندگان

  • J. R. Forbes
  • C. J. Damaren
چکیده

The stability and control of systems possessing passivity violations is considered. The authors seek to exploit the finite gain characteristics of a plant over a range in which a passive mapping no longer exists while implementing a similar hybrid passive and finite gain controller. Using the dissipative systems framework the authors define a hybrid system: one which possesses a passive map, and finite gain characteristics when the passive map is destroyed. The definition of a hybrid system utilises a switching parameter to break the system into passive and finite gain regions. It is shown that this switching parameter is equivalent to an ideal lowpass filter and can be approximated by a Butterworth filter. The stability of two hybrid systems within a negative feedback interconnection is also considered. A hybrid passivity and finite gain stability theorem is developed using both Lyapunov and input–output techniques, which yield equivalent results. Sufficient conditions for the closed-loop system to be stable are presented, which resemble an amalgamation of the traditional passivity and small-gain theorems. T o

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Passivity-Based Stability Analysis and Robust Practical Stabilization of Nonlinear Affine Systems with Non-vanishing Perturbations

This paper presents some analyses about the robust practical stability of a class of nonlinear affine systems in the presence of non-vanishing perturbations based on the passivity concept. The given analyses confirm the robust passivity property of the perturbed nonlinear systems in a certain region. Moreover, robust control laws are designed to guarantee the practical stability of the perturbe...

متن کامل

A "mixed" small gain and passivity theorem in the frequency domain

We show that the negative feedback interconnection of two causal, stable, linear time-invariant systems, with a “mixed” small gain and passivity property, is guaranteed to be finite-gain stable. This “mixed” small gain and passivity property refers to the characteristic that, at a particular frequency, systems in the feedback interconnection are either both “input and output strictly passive”; ...

متن کامل

FINITE-TIME PASSIVITY OF DISCRETE-TIME T-S FUZZY NEURAL NETWORKS WITH TIME-VARYING DELAYS

This paper focuses on the problem of finite-time boundedness and finite-time passivity of discrete-time T-S fuzzy neural networks with time-varying delays. A suitable Lyapunov--Krasovskii functional(LKF) is established to derive sufficient condition for finite-time passivity of discrete-time T-S fuzzy neural networks. The dynamical system is transformed into a T-S fuzzy model with uncertain par...

متن کامل

A “Mixed” Small Gain and Passivity Theorem for an Interconnection of Linear Time-Invariant Systems

We show that the negative feedback interconnection of two causal, stable, linear time-invariant systems with a “mixed” small gain and passivity frequency domain property is guaranteed to be finite-gain stable. This “mixed” small gain and passivity property refers to the characteristic that the frequency range −∞ < ω < ∞ can be divided into intervals for which the two systems in the interconnect...

متن کامل

On relationships among passivity, positive realness, and dissipativity in linear systems

The notions of passivity and positive realness are fundamental concepts in classical control theory, but the use of the terms has varied. For LTI systems, these two concepts capture the same essential property of dynamical systems, that is, a system with this property does not generate its own energy but only stores and dissipates energy supplied by the environment. This paper summarizes the co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010